Как вы думаете, где находится самое холодное место в нашей Вселенной? На сегодняшний день это Земля. К примеру, температура поверхности Луны -227 градусов по шкале Цельсия, а температура вакуума, окружающего нас, составляет 265 градусов ниже нуля. Однако в лаборатории на Земле человек может добиться температуры гораздо ниже, для изучения свойств материалов в условиях сверхнизких температур. Материалы, отдельные атомы и даже свет, подвергнутые экстремальному охлаждению, начинают проявлять непривычные свойства.
Первый эксперимент такого рода был поставлен в начале 20 века физиками, которые изучали электрические свойства ртути при сверхнизкой температуре. При -262 градуса по Цельсию ртуть начинает проявлять свойства сверхпроводимости, уменьшая сопротивление электрическому току практически до нуля. Дальнейшие эксперименты также выявили другие интересные свойства охлажденных материалов, включая сверхтекучесть, которая выражается в "просачивании" вещества сквозь твердые перегородки и из закрытых емкостей, пишет sunhome
Наукой определена самая низкая достижимая температура - минус 273.15 градусов Цельсия, но практически такая температура недостижима. Практически, температура является приблизительной мерой энергии, заключенной в объекте, поэтому абсолютный ноль показывает, что тело ничего не излучает, и никакой энергии из этого объекта извлечь нельзя. Но несмотря на это, ученые пытаются подобраться как можно ближе к абсолютному нулю температуры, актуальный рекорд был поставлен в 2003 году в лаборатории Массачусетского института технологии. Ученым недотянули до абсолютного нуля всего 810 миллиардных долей градуса. Охлаждали они облако атомов натрия, удерживаемое на месте с помощью мощного магнитного поля.
Казалось бы - в чем прикладной смысл таких опытов? Оказывается, исследователей интересует такое понятие как конденсат Бозе-Эйнштейна, которое представляет собой особое состояние вещества - не газ, твердое или жидкое, а просто облако атомов с одинаковым квантовым состоянием. Такая форма вещества была предсказана Эйнштейном и индийским физиком Satyendra Bose в 1925 году, а получена только через 70 лет. Один из ученых, который добился такого состояния вещества - Wolfgang Ketterle, который получил за свое открытие Нобелевскую премию в области физики.
Одно из замечательных свойств конденсата Бозе-Эйнштейна (КБЭ) - возможность управления движением световых лучей. В вакууме свет перемещается со скоростью 300000 км в секунду, и это максимальная скорость, достижимая во Вселенной. Но свет может распространяться медленнее, если будет распространяться не в вакууме, а в веществе. С помощью КБЭ можно замедлить движение света до малых скоростей, и даже остановить его. Из-за температуры и плотности конденсата световое излучение замедляется и может быть "схвачено" и преобразовано напрямую в электрический ток. Этот ток может быть передан в другое облако КБЭ и преобразовано обратно в световое излучение. Эта возможность очень востребована для телекоммуникации и вычислительной техники. Тут я немного не понимаю - ведь устройства, преобразующие световые волны в электричество и обратно УЖЕ есть... Видимо, использование КБЭ позволяет производить это преобразование быстрее и точнее.
Одной из причин, почему ученые настолько стремятся получить абсолютный ноль - попытка понять, что происходит и происходило с нашей Вселенной, какие термодинамические законы в ней действуют. При этом исследователи понимают, что извлечение всей энергии до последнего из атома практически недостижимо.
E-NEWS
agrinews.com.ua